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Abstract. In this paper, we show how a second-order accurate two-step method used in the 
numerical computation of hydrodynamic flows may be derived directly from the integral 
conservation laws. A necessary and sufficient condition for stability for the linearized 
equations is derived for the three-dimensional Cartesian coordinate case. 

I. Introduction. In 1960 Lax and Wendroff [2] presented a second-order accurate 
scheme for the numerical computation of hydrodynamic flows (neglecting various 
stresses and heat conduction). An important feature of the method was that the 
differential equations were written as a first-order system in conservation form. The 
difference scheme was derived by expanding the solution in a Taylor series in the 
time variable up to terms of second order. The method involved the computation 
of matrices, the determinants of which were the Jacobians of certain transforma- 
tions. 

Richtmyer [3] presented a two-step method, for problems in two-space dimen- 
sions, explicit like the Lax-Wendroff, but which required no matrix calculations and 
had the same order of accuracy. A third explicit two-step method, avoiding matrix 
calculations, was used by Rubin and Burstein [4] and in the latter paper all three 
schemes were compared. In Section II of this paper, we shall show how the two- 
step Lax-Wendroff method as given by Richtmyer can be generalized to three- 
space dimensions and time. The result follows, with suitable approximations, 
directly from the integral conservation laws. The motivation for this approach is 
twofold: 

(1) The conservation laws are, in fact, integral in nature.** 
(2) Alternative quadrature methods immediately suggest themselves. In par- 

ticular, we have used the midpoint and rectangular rules for numerical integration. 
This approach, however, may be used to derive approximations of higher order 
than two. It is to be noted that the analysis given here depends on the differentia- 
bility of the functions. The applications of interest, however, are to discontinuous 
flows. The justification for the use of this approximation is given in [2] where it is 
proved that if a solution to the finite-difference equations exists, then the Lax- 
Wendroff scheme converges to a weak solution of the conservation laws. In [1], 
Anderson, Preiser, and Rubin showed how the hydrodynamic equations could be 
written in conservation form for arbitrary orthogonal curvilinear coordinate sys- 
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tems. The derivation of Section II is then immediately applicable to any such co- 
ordinate system. The application of the midpoint rule to one- and two-space di- 
mensions for Lagrangian coordinates appeared in a report by Taub [6]. 

In Section III we derive a necessary condition for stability for the linearized 
equations in three-dimensional Cartesian coordinates. A theorem of Kreiss [8] 
proves sufficiency and the Lax-Richtmyer theorem guarantees convergence, for 
this linear case. 

II. Conservation Laws, Difference Schemes and Stability. The hydrodynamic 
conservation equations, in three dimensions, for perfect fluids in the absence of 
external and dissipative forces may be written in the following way: 

(2.la) f {-,{d- + div (pu) dv = 0, 

(2.1b) at) (Pu) + div (puu + pI)}dv = 0, 

(2. 1c) a + div (u[E + p]])dv = O. 
v(t)Ka 

p, u, E, and p are the density, velocity vector, total energy per unit volume and 
pressure respectively. I is the identity tensor, uu is a dyadic product*** and v(t) is 
the time dependent material volume. We assume that p may be eliminated by 
means of an independent equation of state relating p and the other variables. The 
above system of five equations in Cartesian coordinates may be written as follows :t 

(2.2) f twe + fr>r}dv = O 
v(t) 

w is a 5 component vector function of x and t, (p, pul, pu2, pul, E) and f is a nonlinear 
function of w. For continuous integrands, the integral equations are equivalent to 
the following differential equations 

(2.3) w t + fe Or = 0. 

Across a surface of discontinuity, the Rankine-Hugoniot relations, which are em- 
bedded in the integral formulation, must be appended to the differential equations. 

Lax and Wendroff consider the system of equations (2.3). They assume that 
w(x, t) is an exact smooth solution of that system and expanded it in a Taylor series 
up to terms of second order. In one dimension 

w(x, t + At) = w(x, t) + Atwt + 12 (At)2wtt + 0(A). 

Using (3) they express the time-derivatives as space derivatives: 

Wt = -fax 

Wtt = = -ft= (Afax),x 

*** If u is a column vector with components (u1, u2, u3), then uu represents the matrix product 
UUT where UT is the transpose of u. 

t The Latin indices take on the values 1, 2, 3. The Einstein summation convention and the 
comma notation for differentiation are employed, thus, fTr -= &f'/axI + f /ax2 + af3/ax3. 
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A is the matrix whose determinant is the Jacobian of f with respect to w. Hence: 

w(x, t + At) = w(x, t) - Atfx + 1 (At)2(Af,x),x + 0(At3). 

The finite-difference analogue of this equation is found by approximating f x and 
(Afx) ,. 

In [3] Richtmyer presented his two-step version of the Lax-Wendroff scheme 
for one- and two-space dimensions. In one dimension it may be written 

(2.4a) w (t + At, x) = (W (t, x + Ax) + w (t, x -Ax)) 

- 2A [f(w(t, x + Ax)) - f(w(t, x - Ax))] 

At 
w (t + 2At, x) = w (t, x) - A [f (w (t + At, x + Ax))] 

(2.4b) 
- f(w(t + At, x- Ax))] . 

The bars signify intermediate values. These intermediate values are calculated 
using Eq. (2.4a) which is a first-order difference approximation. Equation (2.4b) is 
second-order accurate. 

Consider now the following three integrals which express the hydrodynamic 
conservation laws in an arbitrary orthogonal coordinate system. 

(2.5a) f ( (g) 1/2p), + ((g) 1I2ur), r } dxldx2dx3- 0, 
V(t) 

(2.5b)f {((g) 1I2 rpUr)t + (g) 1,2 ~r TU + + p3 ]) }dxldx2dx3= 0, 
V(t) Vg rr vgss vgrrv gss ,s 

(2.5c) f { ((g)112E),t + ((g)l/2Ur[E + p]),r}dx'd dx3 = 0 
V(t) 

In these equations g is the determinant of grs, the flat metric of Newtonian space 
with the coordinates (XI, X2, X3). The covector ,r = 9rss satisfies Eq. (2.6) which is 
known as Killing's equation [7] 

(2.6) (r; s + s; r 0 . - 

The semicolon in (2.6) denotes covariant differentiation and 5 is the Kronecker 
delta. ur and ua are the physical velocities and not the tensor components; the dxi, 
however, are the tensor components of the volume element. In [1], explicit examples 
for cylindrical and spherical coordinates are given. 

We write down the analogues of Eqs. (2.4a) and (2.4b) for the 5-component 
vector w: ((g) 112p, (g)l /2purr, (g)"2E) appearing in the integrands of Eqs. (2.5a, b, c) 
and the corresponding function f(w) 

(2.7a) w(t + At, x) = (I + Ql)w(t, x) - AtS(t, x), 

where 

Xj = A-j, S (t, x) = Z Dojf(w (t, x) ), 

Q1= 1 E (Axj)2D+jDj. 



60 EPHRAIM L. RUBIN AND STANLEY PREISER 

Here x represents the three-dimensional point (x1, x2, x3), the difference operators 
are defined by 

2AxDojv(x) = v(x + Axej) - v(x - Axej), 

AxD+jv (x) = v (x + Axej)-v (x), 

AxDvjv (x) = v (x) -v (x - Axej), 

where ej is the unit vector in the xi direction. 

(2.7b) w(t + 2At, x) = w(t, x) - 2AtS(t + At, x) 

Equation (2.7b) may be derived by applying the midpoint quadrature rule to 
the time integral of the integral conservation laws (2.5a, b, c). Assuming the validity 
of the interchange of the order of integration one of the integrals may be evaluated 
exactly. For sufficiently smooth integrands application of the midpoint rule to the 
remaining integrals gives (2.7b). 

The manner in which the first term on the right-hand side of (2.7a) is evaluated 
allows for some arbitrariness. A direct application of the rectangular rule to the 
time integral of (2.5a, b, c) after evaluating one of the integrals leads to (2.7a) with 
Q, = 0 which is unconditionally unstable. Our choice is guided by stability require- 
ments. Equation (2.7a) as written is conditionally stable. 

III. A Necessary and Sufficient Condition for Stability in Cartesian Coordinates. 
For the stability discussion of the three-dimensional Cartesian case we linearize the 
equations, i.e., we write 

(3.1) fj Xk= A lW1,xk 

where A1 = (Ofji//w 1) are the matrices whose determinants are the Jacobians of the 
transformation and are regarded as locally constant. 

To calculate the amplification matrix we try a solution of the form 

w(t, x, y, z) = wo exp [iaAxl + ia2 Ax2 + ia3Ax3] 

and substitute into Eq. (2.7b) using Eqs. (2.7a) and (3.1). We shall consider the 
case where all the Xi's are equal. The amplification matrix, G, is then given by the 
following expression: 

G = I- i[cos 0 + CO S2 + COS 05 2 At (A, sin 0 + A2sin 2 + A3 sin 03)] 

-2[ft (A_ sin i + A2 sin2 + A 3sin 3)]. 

Here 

= a1Axl, 2 = a2AX, 03 = a3Ax3. 

The amplification matrix may also be derived in the following way which will 
be useful for the sufficiency part of the stability proof.tt To linearize (2.7a, b) we 
replace S(t) by Q = EAjDoj. Combining (2.7a) and (2.7b) leads to 

It We are grateful to the reviewer for pointing this out to us. 
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(3.3) w(t + 2At, x) = [I - 2AtQ (I + Qj) + 2 (At)2Q2]w (t, x). 

Noting that the Fourier transforms of Q and Qi are 

Q Ax. A Qx E sin- 2 3 E cos { 

we get (3.2) directly, for the case where the Ax1 are all equal. 
Rather than calculate the eigenvalues of G we shall consider the eigenvalues of 

another matrix G' obtained by writing the equations in terms of density, velocity 
and pressure. This leads to new matrices Al', A2', and A 3'. They are related to 
A1, A2, and A3 by a similarity transformation so that the stability discussion is 
unaffected by this transformation. In matrix form, for Cartesian coordinates, 

- + A1' aw + A2' a + A3' = 0 at a x ay az 

I P 

0 ~ 0 0 0 u 
U PP0 

AI '=A,'(w) 0 0W v 0 U0 0 

W 0 0L O 00 v 

V0 Pc 0 0 

0 V0 p 01 

Aw'A|(w, A )' 0 0 w 0 | 

0 00w 01 

I P j 

A^2' =A3'(w')- O O v O 0 

LO 0 0 PC2wi 

Let 

(3.4) M = A1'sin 1 + A2'sint2 + A3'sint3. 

Consider a line with direction numbers sin 41, sin t2, and sin t3. Then 

sin 41 sin 42 cos r = coss= s 
(sin2 t + sin262 + Sin2 3)1/2 (sin2 t + sin22+ sin 23) 1/2 

sin 03 Cos = sint = 

(sin 2 ~j + sin26~ +si 25~)1 
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cos r, cos s, and cos t are therefore the direction cosines of this line. From (3.4) 

' cosr costs cos t 0 

O u' 0 0 - cosr 
P 

M = (sin2 + sin222+ sin 2)1 2 0 0 U 0 COSS 
p 

O 0 0 u 1 -cos t 
p 

2 2 2 O PC cosr pC cos s pc cost U' 

where u' = u cos r + v cos s + w cos t is the component of the velocity V in the 
above direction. 

The eigenvalues of M are 

U; ' 

U/ 

(sin2 0 + sin2 62 + sin 23) 1/2Uf 

9t+4 

Let , = (At/ Ax) K, where K is an eigenvalue of M. The eigenvalues of G are 

g = J-i ' ,u(cos 01 + co0 S2 + COS 43) - 22, 

IgI2 = (1 - 2 2)2 + 4 A2(COS + COS + COS 43)2 

? (1L- 22)2 + 12 A2(COS2 + cos 2 + COS2 3) 

= 1 _ 12 
/i2[(sin2 + sin2 2 + sin 23)- 3 2] 

9 

r f~ ~~u 2- 

= 
- 2[sin2 

+ 
sin2 2+ 

sin 
3] 

1 - 3 

At i')J 1- AxK 
L tuf - cJ 

The largest values of the quantities in the curly bracket is IVI + c. Hence JgJ2 
? 1 if (At/lAx) (IVI + c) < 1/V/3. 

For Cartesian coordinates the stability condition is ( At/ Ax) (Ivl I+ c) < I/Vn 

where n = 1, 2, 3 is the dimension of the space. 
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To prove sufficiency, we use a theorem of Kreiss [8].ttt Consider the following 
hyperbolic system of equations with constant coefficients w, t = P(O/Ox) w and the 
difference approximation to it 

(3.5) v (t + At, x) = [I + Q (AxD) ]v (t, x) 

Q( Ax, D) is a polynomial in AxDoj, AxD+j and AxD-j with constant matrix co- 
efficients. 

The difference approximation (3.5) is called dissipative of order 2r, r a non- 
negative integer, if there exists a constant a < 0 such that for all t with 1 _r 

jj 1() | - _ 31212r 

where aj = 3jQ (I + Q) is an eigenvalue of I + Q and I + Q is the Fourier trans- 
form of I + Q (AxD). t = co Ax, where co is the dual variable. 

Theorem 5 of Kreiss states: Let the difference approximation (3.5) be dissipative 
of order 2r and assume that for 11 ? xr, I + Q can be written in the form 

2r 2 

(3.6) 1 + Q = I + (XP())l' + Q2r(Q)j Q2r= 

Then it is stable. 
We now observe that (3.3) may be written 

w(t + 2At, x) = [I - 2AtQ (I + Qj) + 2 (At)2((Q(I + Q'))2 _ Q2)]w(t, x) 

with 

Q2r = 2 (At) 2(2Q2Q1 + Q2Qi2) 

Since 

| Q2rj < constant | 14 

we have satisfied the conditions of Theorem 5 which proves that the linearized 
approximation is stable. 
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